Recenzja rozpraw doktorskiej mgr Marty Wiśniewskiej
„Znaczenie warunków geologicznych dla możliwości poboru energii niskiej entalpii
przez pionowe gruntowe wymienniki ciepła”

1. Podstawa opracowania recenzji

Podstawą formalną do napisania tej recenzji jest decyzja Rady Wydziału Nauk
Geograficznych UŁ z dnia 23 czerwca 2015 r. o wyborze recenzenta oraz związane z tym
pismo zlecające wykonanie recenzji.

2. Przedmiot oceny

Przedmiotem oceny jest rozprawa doktorska opracowana przez mgr Martę Wiśniewską,
zatytułowana:
„Znaczenie warunków geologicznych dla możliwości poboru energii niskiej entalpii
przez pionowe gruntowe wymienniki ciepła”

Promotorem pracy jest dr hab. Jacek Forysiak, profesor UŁ.
Praca powstała w Katedrze Geomorfologii i Paleografii UŁ w Łodzi.
Rozprawa liczy 161 stron, nie licząc stron załączników. Praca jest podzielona na
7 rozdziałów, dołączono do niej pięć załączników. Część główną ilustrują 44 rysunki
i 11 tabel, ujęte w dwu odrębnych spisach. W załącznikach dołączono cztery mapy
i osiemnaście przekrojów geologicznych. Spis literatury wymienia 194 publikacje naukowe,
zawiera listę 13 dokumentów o charakterze prawnym oraz odsyłacze do 4 źródeł
internetowych. W pracy zamieszczone są streszczenia w języku polskim i angielskim.

3. Ogólna charakterystyka rozprawy, ocena trafności doboru jej tematu, tytułu
i sformułowania tez.

W recenzowanej pracy wykonano liczne, wieloaspektowe analizy warunków gruntowych
i przedstawiono wyniki obliczeń składające się na studium uwarunkowań geologicznych dla
instalacji pionowych gruntowych wymienników ciepła na terenie Łodzi.
Analizy zostały przeprowadzone na podstawie dostępnych wyników badań geologicznych,
pochodzących z różnych źródeł. Są to głównie źródła archeologiczne jednak zarchiwizowane
badania prowadzone były w różnym celu, różnymi technikami i w różnych okresach.
Wykorzystano również projekty instalacji geotermalnych.
Recenzowana praca podejmuje bardzo aktualną problematykę pozyskiwania energii wykorzystując zasoby ciepła Ziemi. Problem ten jest jednym z elementów dyskutowanej szeroko polityki i strategii pozyskiwania energii. Trudno zaliczyć tę technikę do metod OZE (ze względu na zasilanie agregatów) jednak jest oczywiste, że poprawia ona bilans energetyczny, w którym po stronie strat wpisuje się wykorzystanie spalanych zasobów kopalin. Ograniczono się w dysertacji jedynie do wąskiego sektora pozyskiwania energii z zasobów cieplnych Ziemi (opisanego w tytule) jednak ten właśnie sektor rozwija się szczególnie dynamicznie i oferuje możliwość powszechnego, stosunkowo niedrogiego sposobu ogrzewania (lub chłodzenia) budynków. Tematyka ta jest przedmiotem zainteresowania wielu zespołów badawczych w Polsce i na świecie, interesują się nią także producenci instalacji geotermalnych i ewentualni inwestorzy. Poruszane w doktoracie zagadnienia mają ogromne znaczenie praktyczne. Świadczy o tym duża ilość publikacji na ten temat, ukazujących się w wiodących periodykach naukowych i naukowo-technicznych.

Tytuł pracy sformułowany jest bardzo precyzyjnie, oddaje on dobrze zawartość i zakres pracy.

Sformułowano cel ogólny i cele szczegółowe pracy. Cel ogólny to określenie wartości przewodności cieplnej oraz jednostkowych wydajności cieplnych instalacji pionowych GWC w wybranych miejscach na terenie Łodzi i sporządzenie, na tej podstawie, map tych parametrów obejmujących obszar Łodzi. Lista celów szczegółowych jest dłuża, jej synteza brzmi następująco: cele szczegółowe to przygotowanie metod i opisanie warunków geologicznych i hydrogeologicznych na obszarze Łodzi, pozwalających na wykonanie map oszacowań wartości przewodności cieplnej oraz jednostkowych wydajności cieplnych dla trzech wybranych długości otworów GWC.

Realizując cele pracy, Doktorantka osiągnęła wiele ważnych efektów poznowawczych, dotyczących wpływu budowy geologicznej na efektywność instalacji geotermalnych badanego typu. Rezultaty poznowawcze zapisane zostały w postaci map rozkładów przestrzennych wybranych parametrów układu: warunki geologiczne – instalacja GWC. Te wyniki mogą być bardzo interesujące zarówno dla instalatorów GWC, dla potencjalnych inwestorów oraz dla władz Łodzi.

Recenzowana praca dotyczy zagadnień trudnych, aktualnych i wymagających wiarygodnych danych, użytecznych w zastosowaniach inżynierskich. Trudność zebrania danych, zagadnienie oceny danych i ich analiza – to kolejne problemy, które zostały rozwiązane w dysertacji. Zebranie danych i ich prezentacja graficzna jest również wartością tej pracy.

Temat rozprawy jest ponad wszelką wątpliwość, aktualny i interesujący dla środowiska naukowego i technicznego prężnie rozwijającej się gałęzi inżynierii geotermalnej. Ma związek z ideą budynku o zerowym bilansie energii, wpisuje się w nurt poszukiwań ekologicznie przyjaznych technik eksploatacji sił przyrody (ciepło Ziemi). Dysertacja ma zaletę aktualności: wnosi nową informację o możliwym sposobie pozyskiwania energii, coraz częściej stosowanym w praktyce.

4. Szczegółowa analiza treści rozprawy i jej ocena merytoryczna

W tym punkcie recenzji przedstawiona zostanie treść kolejnych rozdziałów oraz uwagi dotyczące ich zawartości merytorycznej.

4.1.

Rozdział pierwszy to rozdział wstępny. Przedstawiono w nim zagadnienia geotermalne na tle ogólnych problemów związanych z pozyskiwaniem energii, w tym także – w kontekście uzyskiwania energii ze źródeł odnawialnych. Przedstawiono krótko najbardziej zasadniczy podział technik eksploatacji źródeł energii geotermalnej i umieszczono zagadnienie poboru
energii niskiej entalpii za pomocą gruntowych, pionowych wymienników ciepła (GWC) w tym szerokim kontekście. Wymieniono ogólnie zalety zastosowań GWC, na uwagę zasługuje ciekawa, pełna i szczegółowa analiza barier rozwoju tej techniki jej uwarunkowań o charakterze technicznym, społecznym i ekonomicznym. Pionowe gruntowe wymienniki ciepła omawiane są szczegółowo po raz pierwszy w tym rozdziale. Przedstawiono zasady działania tej metody pozyskiwania energii jej podstawy fizyczne i jej uwarunkowania natury geologicznej.

W kolejnym podrozdziale przedstawiono cel pracy. Należy zwrócić uwagę na fakt, że w rozdziale wstępny zazwyczaj formułowana jest teza pracy. Teza i jej dowód jest często traktowana jako formalnie niezbędna oś kompozycyjna pracy doktorskiej. Nie podzielam tak formalnego podejścia. Uważam, że określenie celu podstawowego pracy i listy celów szczegółowych jest, w tym przypadku, prawidłowym elementem organizacji dysertacji. Celem pracy jest, bowiem, określenie wartości i rozkładu przestrzennego wybranych parametrów określających opłacalność pozyskiwania energii za pomocą technologii pionowych GWC w zależności od budowy geologicznej dla obszaru Łodzi. W dalszych podrozdziałach opisano krótko teren badań, metodykę badań, źródła archiwalne i projektowe, które będą analizowane w dysertacji. Przedstawiono krótko podstawy fizyczne omawianych zjawisk. O ile zagadnienie roli przewodnictwa cieplnego gruntu jest analizowane bardziej szczegółowo w dalszej części dysertacji, o tyle, jak się wydaje, jednostkowa wydajność cieplna i jej zależność od współczynnika przewodnictwa jest w tym rozdziale zdefiniowana w sposób ostateczny, jako funkcja współczynnika przewodzenia ciepła gruntu (zależność zilustrowana na rysunku 7). Co prawda, w rozdziale piątym Autorka ponownie wraca do tego tematu, jednak przedstawia tam jedynie szczegółowo przyjęte założenia, na tle możliwych, wymienianych w literaturze ustaleń alternatywnych.

W ostatnim podrozdziale rozdziału pierwszego przedstawiono uwarunkowania prawne regulujące aktywność podmiotów projektujących i budujących instalacje zawierające GWC.

W całym rozdziale pierwszym można znaleźć liczne odwołania do źródeł, które pozwalają stwierdzić, że Doktorantka zna podstawowe prace dotyczące swojego obszaru zainteresowań, jednak analiza literatury zagadnienia nie jest wydzielona i zakończona w jednym rozdziale. Autorka wiele razy obszernie odwołuje się do źródeł w miarę omawiania kolejnych zagadnień, w dalszych rozdziałach rozprawy.

Ten komentarz dotyczący sposobu korzystania ze źródeł ma zastosowanie do całej pracy.

4.2.

Rozważania przeprowadzone w tym rozdziale są kompetentne, przedstawiono obszerny materiał faktograficzny, z konkluzjami Autorki można się zgodzić.

4.3.

W rozdziale trzecim analizowane są źródła ciepła niskiej entalpii dostępne dla gruntowych, pionowych wymienników ciepła. Elementem tej analizy jest odwołanie się do praw Fouriéra rządzących tym zagadnieniem. Zdaniem recenzenta, prawa te zostały przedstawione jedynie marginalnie, również w sensie edytorskim (zapisano je w stopce strony). Wiąże się to również z trudnościami w prawidłowym przedstawieniu listy zjawisk rządzących przepływem ciepła w ośrodku trójfazowym, jakim jest grunt. Wymienione w pracy kondukcja, konwekcja i radiacja są niewątpliwie jakościowo różnymi mechanizmami przepływu ciepła w ośrodku. O ile radiacja została słusznie i explicite pominięta, o tyle jednak człon konwekcyjnego w prawach Fouriéra nie wpisano i nie jestjasne, czy człon ten w jakiś sposób został wzięty pod uwagę. Nie twierdzę, że powinien być uwzględniony. Co więcej, w wielu miejscach pracy, pojawiają się wątpliwości o wypływie strumieniów wód gruntowych na wydajność instalacji GWC. Nie jest to jednak nigdzie sformułowane wyraźnie. Rysunki rozwoju w czasie strumienia zamieszczone są w rozdziale drugim, choć logicznie łączą się, moim zdaniem, z treścią rozdziału trzeciego. Proces zmian izoterm w otoczeniu pionowego GWC jest prawidłowo przedstawiony na rysunkach i Doktorantka niewątpliwie przedstawia prawidłowo jakościowy rozwój tych procesów, jednak dotykamy tu, jak się wydaje, wpływu temperatury a nie jej gradientu na wydajność. Rysunki 20 A. i B. wiążą się z równaniem podanym w stopce strony 52. Ten wpływ nie jest przedmiotem ilościowych analiz w tej rozprawie, nie było to również stawiane jako cel pracy. Mimo, że jakościowo problem ten jest wielokrotnie poruszany w dysertacji, nie jestjasne jak znacząca może być rola konwekcyi w zachowaniu racjonalnego poziomu jednostkowej wydajności cieplnej.

4.4.

Przekroje i ich opisy są wartościowym wynikiem pracy Doktorantki.

4.5.

Rozdział piąty poświęcony jest obliczeniom i przedstawieniom rozkładów wartości współczynnika przewodzenia ciepła utworów geologicznych oraz przypisaniu tym utworom geologicznym – jednostkowych wydajności cieplnych pionowych GWC. Analiza przeprowadzona została na podstawie wspomnianych już danych z archiwalnych profili wiertniczych z obszaru Łodzi.

4.6.

W rozdziale szóstym Autorka przedstawia szczegółowo rozkład przestrzenny energii niskiej entalpii zgromadzonej w osadach na terenie miasta Łodzi i możliwość jej poboru za pomocą pionowych GWC. Miara tej energii jest, jak poprzednio, jednostkowa wydajność cieplna pionowego GWC, liczona oddzielnie dla trzech różnych głębokości otworów. Przedstawiono mapy mediany tej wielkości. Tak jak w rozdziale poprzednim, przeprowadzona jest przekonywująca dyskusja otrzymanych wyników. Na podkreślenie zasługuje fakt, że Doktorantka zwraca uwagę na bardzo dużą zmienną przestrzenną uzyskanych wyników, co z jednej strony narzuca ostrożność w ich interpretacji a z drugiej strony budzi uznanie dla determinacji i odwagi Autorki pracy, której udało się uzyskać wartościowe wyniki mimo tak trudnego do budowania jakichkolwiek uogólnień obszaru. Należy się zgodzić z tym, że zmienną ta jest właściwa dla Łódzkich warunków gruntowych. Na tym polega ich specyfika, podkreślana często w łódzkim środowisku geologów i geotechników.

4.7.

Rozdział siódmy zawiera podsumowanie i wnioski końcowe. Autorka przedstawia 12 wniosków szczegółowych. Wobec szczegółowości tych konkluzji ich analiza indywidualna jest trudna. Można jednak stwierdzić, że wszystkie te wnioski są dobrze umotywowane wynikami zawartymi w treści poprzednich rozdziałów pracy. Wnioski te dotyczą zarówno niejednorodności budowy geologicznej, dużego rozrzutu wyników oszacowań i istniejących danych pomiarowych jak i lokalizacji szczególnie dobrych bądź szczególnie niekorzystnych warunków dla instalacji zawierających GWC. Są tu również wnioski praktyczne, zalecające, między innymi, szczególną staranność przy ocenie lokalnych warunków poboru energii przez wykonywanie badań in situ. Podzielam opinie i stwierdzenia wyrażone we wnioskach przez Doktorantkę.

5. Dyskusja

W powyższej analizie merytorycznej zaakcentowane zostały te elementy, które są dyskusyjne. Zostaną one krótko sformułowane poniżej:

Zagadnienie powyższe wiąże się z temperaturą i dynamiką wód gruntowych. Jaki może być wpływ tych czynników na efektywność instalacji? Czy dysponujemy wiedzą o dynamicznych wód w warstwach wodonośnych?

Wielokrotnie podkreślę się w pracy zależność współczynnika przewodności cieplnej od wilgotności gruntu. Czy podjęto próbę wyrażenia pośrednich wartości tego współczynnika pomiędzy przewodnością cieplną w stanie całkowitego nasycenia a przewodnością w stanie suchym? Czy takie rozważania mogą mieć znaczenie praktyczne? Czy mogą wpłynąć na obliczone oszacowania wydajności cieplnej?

Ponadto, jak się wydaje, następujące kwestie powinny być przedyskutowane w związku z przedstawionymi wynikami:

- Czy można porównać przewidywany w zebranych projektach instalacji charakter warunków geologicznych w obszarze otworu z danymi przewidywanymi na podstawie przekrojów? Jeśli tak, to jaki jest wynik takich porównań?
- Czy można spodziewać się, że ocena funkcjonowania instalacji wykonanych zgodnie z zebranymi projektami może w przyszłości pomóc w walidacji przedstawionych w pracy oszacowań efektywności instalacji (bez konieczności wykonywania testu TRT)?

Podkreślę, że wskazanie tych elementów, które wydają się warte dyskusji, nie obniża wartości pracy, przeciwnie, dowodzi tego, że jest ona bardzo interesująca z naukowego punktu widzenia.

6. Uwagi dotyczące redakcji i strony edytorialnej pracy

Pod względem redakcyjnym i edytorialnym praca jest poprawna, zauważono jedynie nieliczne błędy edytorialne, które nie muszą być odnotowywane w recenzji.

Układ pracy uważam za właściwy.

Wydaje się nienaturalne używanie terminu rycina zamiast rysunek.
Należy jednak stwierdzić, że najważniejsze dla pracy wyniki iluzorycznie zostały czytelnie, przedstawione w układzie logicznym. Wykresy, mapy i przekroje zostały dobrze i wyczerpująco opisane.
7. **Podsumowanie i wniosek końcowy**

Wyniki badań wykonanych przez Doktorantkę udowadniają, że istnieje możliwość prognozowania opłacalności stosowania pionowych gruntowych wymienników ciepła jako narzędzia poboru ciepła z gruntu na podstawie istniejących danych dotyczących budowy geologicznej obszaru. Dotyczy to również szczególnie trudnego obszaru Łodzi, dla której powstała, dzięki wysiłkowi Doktorantki, wartościowa analiza uwarunkowań stosowania tej techniki pozyskiwania energii.

Zgadzam się z większością stwierdzeń sformułowanych przez Doktorantkę.

Uważam, że sposób opracowania danych oraz zdolność do prowadzenia pracy badawczej wymagającej kompetencji w różnych dziedzinach nauki i techniki świadczą o dojrzałości naukowej Pani mgr Marty Wiśniewskiej. Autorka wykazała się znajomością najważniejszych prac związanych z interdyscyplinarnym tematem rozprawy doktorskiej oraz ogólną wiedzą teoretyczną pozwalającą zarówno na poprawny i kompletny opis sytuacji geologicznej jak i na rozwiązywanie problemów związanych z wymiana i transportem ciepła w ośrodku gruntowym.

Moim zdaniem, przedstawiona rozprawa doktorska stanowi oryginalne rozwiązanie problemu naukowego, a także wskazuje na umiejętność samodzielnego prowadzenia pracy naukowej przez jej Autorkę.

W związku z tym stwierdzam, że rozprawa doktorska mgr Marty Wiśniewskiej spełnia wymagania ustawy z dnia 14 marca 2003 r. „O stopniach naukowych i tytule naukowym oraz o stopniach i tytule w zakresie sztuki” oraz wnioskuję o jej przyjęcie i dopuszczenie do publicznej obrony.

Marek Lefik